Parametric (Speed)

84. A particle moves in the $x y$-plane so that its position at any time t is given by $x(t)=t^{2}$ and $y(t)=\sin (4 t)$. What is the speed of the particle when $t=3$?
A) 2.909
B) 3.062
C) 6.884
D) 9.016
E) 47.393

2011 BC1
At time t, a particle moving in the $x y$-plane is at position $(x(t), y(t))$, where $x(t)$ and $y(t)$ are not explicitly given. For $t \geq 0, \frac{d x}{d t}=4 t+1$ and $\frac{d y}{d t}=\sin \left(t^{2}\right)$. At time $t=0, \quad x(0)=0$ and $y(0)=-4$. Find the speed of the particle at time $t=3$.

Find the slope of the line tangent to the path of the particle at time $t=3$.

Find the position of the particle at time $t=3$.

Find the acceleration vector of the particle at time $t=3$.

Find the total distance traveled by the particle over the time interval $0 \leq t \leq 3$.

A particle is moving along a curve so that its position at time t is, where $x(t)=t^{2}-4 t+8$ and $y(t)$ is not explicitly given. Both x and y are measured in meters, and t is measured in seconds. It is known that $\frac{d y}{d t}=t e^{t-3}-1$.

Find the speed of the particle at time $t=3$ seconds.

Find the time $\mathrm{t}, 0 \leq t \leq 4$, when the line tangent to the path of the particle is horizontal. Is the direction of the particle toward the left or toward the right at that time. Give a reason for your answer.

There is a point with x-coordinate 5 through which the particle passes twice. Find each of the following.
a) The two values of t when that occurs.
b) The slopes of the lines tangent to the particles path at that point
c) The y-coordinate of that point, given $y(2)=3+\frac{1}{e}$

Find the total distance traveled by the particle for $0 \leq t \leq 4$ seconds.

